1. Given the orthonormal basis vectors from before,

$$|v_B\rangle = \begin{bmatrix} 1\\0 \end{bmatrix} \qquad |v_D\rangle = \begin{bmatrix} 0\\1 \end{bmatrix} \tag{1}$$

evaluate $\sum_{i=1}^{n} |v_i\rangle \langle v_i|$ where $\{|v_1\rangle \dots |v_n\rangle\}$ are the basis vectors and $|\cdot\rangle \langle \cdot|$ is the outer product. What do you notice about the result?

- 2. Suppose we have an $n \times n$ matrix \mathbf{C} , an $n \times 1$ column vector $|x\rangle$ and a $1 \times n$ row vector $\langle y|$. Predict the type of result (scalar, matrix, bra, or ket) for each operation:
 - (a) $\langle y|x\rangle$
 - (b) $\mathbf{C} |x\rangle$
 - (c) $\langle y | \mathbf{C}$
 - (d) $|x\rangle \langle y|$
 - (e) $\langle y | \mathbf{C} | x \rangle$
- 3. Given the matrices

$$\mathbf{A} = \begin{bmatrix} 0 & i \\ 3 & 3 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 3 & -1 \\ 2 & i \end{bmatrix}$$

perform the following operations:

- (a) **AB**
- (b) **BA**
- (c) Are your answers from a) and b) the same? Should they be?
- 4. Consider the matrix

$$\mathbf{D} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}.$$

- (a) Does this matrix have any eigenvalue(s) that can be determined by inspection? If so, specify the eigenvalue(s) and corresponding eigenvector(s).
- (b) Determine the remaining eigenvalues and eigenvectors for this matrix. (Hint: consider how the results from (a) might be used to simplify the problem.)
- 5. Use summation notation to show that the trace of the matrix product **AB** is equal to the trace of the matrix product **BA** for any two square matrices **A** and **B** of (the same) arbitrary size.
- 6. (Bonus). Matrix **F** has eigenvalues $\lambda = -1, \sqrt{3}, 2$ corresponding to the orthonormal eigenvectors $|a\rangle, |b\rangle, |c\rangle$, respectively.
 - (a) Given the power series $e^{\mathbf{X}} = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{X}^k$ for an $n \times n$ real or complex matrix \mathbf{X} (where $\mathbf{X}^0 = \mathbf{1}_n$), expand $e^{i\mathbf{F}t}$. Examine the action of each of the first few terms on an eigenvector $|v\rangle$ and use this result to re-collapse the series.

(b) Using your result from part (a) and given the normalized vector

$$|\chi\rangle = \frac{1}{\sqrt{7}}|a\rangle - \frac{2}{\sqrt{7}}|b\rangle + \frac{i+1}{\sqrt{7}}|c\rangle$$

- find $|\Phi(t)\rangle = e^{i\mathbf{F}t} |\chi\rangle$.
- (c) Set up the calculation for $|\Phi(t)\rangle=e^{i{\bf F}t}\,|\chi\rangle$ explicitly in matrix form.